

Medium voltage cable (Class 6.6.3.1) ● For maximum voltages and outputs ● igupren outer jacket ● Shielded ● Oil-resistant ● Flame-retardant

01/2021

Medium voltage cable (Class 6.6.3.1) ● For maximum voltages and outputs ● igupren outer jacket ● Shielded ● Oil-resistant ● Flame-retardant

Dynamic information

Bend radius	e-chain [®] linear flexible fixed	minimum 10 x d minimum 8 x d minimum 5 x d
Temperature	e-chain [®] linear flexible fixed	-20 °C up to +80 °C -25 °C up to +80 °C (following DIN EN 60811-504) -30 °C up to +80 °C (following DIN EN 50305)
v max.	unsupported gliding	10 m/s 6 m/s
a max.	50 m/s ²	
Travel distance	Unsupported travels and up to 400 m and more for gliding applications, Class 6	

REACH

RoHS

CE

These values are based on specific applications or tests. They do not represent the limit of what is technically feasible.

Guaranteed service life according to guarantee conditions

Double strokes	5 million	7.5 million	10 million
Temperature, from/to [°C]	R min. [factor x d]	R min. [factor x d]	R min. [factor x d]
-20/-10	12.5	13.5	14.5
-10/+70	10	11	12
+70/+80	12.5	13.5	14.5

Minimum guaranteed service life of the cable under the specified conditions.

The installation of the cable is recommended within the middle temperature range.

Electrical information

D

e 6/10 kV (following DIN VDE 0250), other voltages upon request.

Testing voltage

17 kV (in Anlehnung an DIN VDE 0250, Teil 813)

igus° chainflex° CF<u>CRANE</u>

01/2021

Medium voltage cable (Class 6.6.3.1) ● For maximum voltages and outputs ● igupren outer jacket ● Shielded ● Oil-resistant ● Flame-retardant

01/2021

Garantie

chainflex cable guarantee and service life

Medium voltage cable (Class 6.6.3.1) ● For maximum voltages and outputs ● igupren outer jacket ● Shielded ● Oil-resistant ● Flame-retardant

Technical tables:

Mechanical information

Part No.	Number of cores and conductor nominal cross section [mm ²]	Outer diameter (d) max. [mm]	Copper index [kg/km]	Weight [kg/km]
CFCRANE 1x25/16-6/10kV	(1x25/16)C	24.5	496	594
CFCRANE 1x35/16-6/10kV	(1x35/16)C	26.5	625	1012
CFCRANE 1x50/16-6/10kV	(1x50/16)C	29.5	771	1235
CFCRANE 1x70/16-6/10kV	(1x70/16)C	30.5	992	1499
CFCRANE 1x95/16-6/10kV	(1x95/16)C	32.5	1260	1675
CFCRANE 1x120/16-6/10kV	(1x120/16)C	34.5	1528	2030
CFCRANE 1x150/25-6/10kV	(1x150/25)C	36.5	1846	2416
CFCRANE 1x185/25-6/10kV	(1x185/25)C	38.5	2066	2801

Electrical information

Conductor nominal cross section [mm²]	Maximum conductor resistance at 20 °C (following DIN EN 50289-1-2) [Ω/km]	Maximum current rating at 30 °C (following DIN VDE 0298-4) [A]
25	0.795	131
35	0.565	162
50	0.393	202
70	0.277	250
95	0.210	301
120	0.164	352
150	0.132	404
185	0.108	461

The final maximum current rating depends among other things on the ambient conditions, the type of the installation and the number of loaded cores.

Short circuit capacity	(I _{thz}) according to DIN V	/DE 0298-4 (at T _{Conductor} = 80	°C and T _{Short circuit} = 200 °C)
------------------------	--	--	---

Conductor nominal cross section (S_,) $$[\rm mm^2]$$	Short circuit capacity (I_{thz}) [kA] [$t_k = 1 s$]	Short circuit capacity (I _{th2}) [kA] $[t_k = 0.5 \text{ s}]$
25	3.2	4.5
35	4.5	6.3
50	6.4	9.1
70	9.0	12.7
95	12.2	17.2
120	15.4	21.7
150	19.2	27.5
185	23,7	33,5

 J_{thr} : Short-time current density = 128 A/mm²

 r_{kr} : Rated short-circuit duration = 1 s

t.: Short-circuit duration

 $I_{thz} = J_{thr} \bullet S_n \bullet \sqrt{\frac{t_{kr}}{t_k}}$

01/2021

Example image

chainflex[®] CFCRANE

igus

Calculator based on 2 billion test cycles per year Construction Const

RoHS

CE

S_n: Nominal cross section